Published as a conference paper at ICLR 2021

SCORE-BASED GENERATIVE MODELING THROUGH STOCHASTIC DIFFERENTIAL EQUATIONS

Yang Song* **Stanford University** yangsong@cs.stanford.edu Jascha Sohl-Dickstein Google Brain jaschasd@google.com

Diederik P. Kingma Google Brain durk@google.com

Abhishek Kumar Google Brain

abhishk@google.com

Stefano Ermon Stanford University ermon@cs.stanford.edu

Ben Poole Google Brain pooleb@google.com

Content

Overview on generative modeling approaches

- 1. Likelihood-based methods (i.e. VAEs)
- 2. Implicit generative methods (i.e. GANs)
- 3. Score-based methods

Langevin Dynamics

Score-based generative modeling with stochastic differential equations (SDEs)

1. Likelihood-based methods,

directly learn the distribution's probability density via maximum likelihood. (Auto regressive models , normalizing flow models, energy-based models (EBMs), Variational Auto-Encoders (VAEs))

- ✗ likelihood-based models either have to use specialized architectures to build a normalized probability model (e.g., autoregressive models, flow models),
- ✗ or use of surrogate losses (e.g., the evidence lower bound used in variational autoencoders).

1. Likelihood-based methods,

When using a parameterized model to approximate data distribution we should make sure that it is normalized.

$$
\max_{\theta} \sum_{i=1}^N \log p_{\theta}(\mathbf{x}_i).
$$

$$
\int p_{\theta}(\mathbf{x}) \mathrm{d}\mathbf{x} = 1.
$$

is generally intractable to compute.

2. Implicit generative methods,

Learn the sampling process, (i.e. generative adversarial networks (GANs), where new samples from the data distribution are synthesized by transforming a random Gaussian vector with a neural network).

X Unstable training due to the adversarial training procedure.

3. Score-based methods

Approximate $\nabla_{\mathbf{x}} \log p(\mathbf{x})$ instead of approximating $p(\mathbf{x})$ Probability density function (Stein) score function

$$
p_\theta(\mathbf{x}) = \frac{e^{-f_\theta(\mathbf{x})}}{Z_\theta}
$$

$$
\mathbf{s}_{\theta}(\mathbf{x}) = \nabla_{\mathbf{x}} \log p_{\theta}(\mathbf{x}) = -\nabla_{\mathbf{x}} f_{\theta}(\mathbf{x}) - \underbrace{\nabla_{\mathbf{x}} \log Z_{\theta}}_{=0} = -\nabla_{\mathbf{x}} f_{\theta}(\mathbf{x}).
$$

Score function (the vector field) and density function (contours) of a mixture of two Gaussians.

Langevin dynamics

 X_0

Is an approach for mathematical modeling of dynamics of molecular systems. Start from a random sample x_{0} and iterate the following:

$$
\mathbf{x}_{i+1} \leftarrow \mathbf{x}_i + \epsilon \nabla_{\mathbf{x}} \log p(\mathbf{x}) + \begin{bmatrix} 1 & -1 & -1 \\ \sqrt{2\epsilon} & \mathbf{z}_i \\ 1 & -1 & -1 \end{bmatrix} \quad i = 0, 1, \cdots, K,
$$
\n
$$
\mathbf{z}_i \sim \mathcal{N}(0, I).
$$
\nThis extra term adds a bit of noise to

avoid converging to one point.

 X_{τ}

Objective; Fisher divergence

Score-based generative modeling procedure

Is everything okay?

Major pitfall of naive score-based generative modeling

$$
\text{Objective:}\qquad \quad \mathbb{E}_{p(\mathbf{x})}[\|\nabla_{\mathbf{x}}\log p(\mathbf{x})-\mathbf{s}_{\theta}(\mathbf{x})\|_2^2]=\int p(\mathbf{x})\|\nabla_{\mathbf{x}}\log p(\mathbf{x})-\mathbf{s}_{\theta}(\mathbf{x})\|_2^2\mathrm{d}\mathbf{x}
$$

✗ Estimated score functions are inaccurate in low density regions And initial samples are more likely to be in the low density region.

This prevents high quality sampling with Langevin dynamics.

Perturbations with noise

When the noise magnitude is sufficiently large, it can populate low data density regions to improve the accuracy of estimated scores.

How do we choose an appropriate noise scale?

Estimated scores

Multiple scales of noise perturbations

 $\mathbf{x} + \sigma_i \mathbf{z}$, with $\mathbf{z} \sim \mathcal{N}(0, I)$.

Noise Conditional Score-Based Model $\mathbf{s}_{\theta}(\mathbf{x}, i)$

 $\mathbf{s}_{\theta}(\mathbf{x}, i) \approx \nabla_{\mathbf{x}} \log p_{\sigma_i}(\mathbf{x})$

A U-Net with skip connections is used for $\mathbf{s}_{\theta}(\mathbf{x}, i)$

Perturbed image with multiple scales of noise.

Standard deviations of added Gaussian noise

Annealed Langevin dynamics.

Algorithm 1 Annealed Langevin dynamics.

Require: $\{\sigma_i\}_{i=1}^L, \epsilon, T$. 1: Initialize $\tilde{\mathbf{x}}_0$ 2: for $i \leftarrow 1$ to L do $\alpha_i \leftarrow \epsilon \cdot \sigma_i^2 / \sigma_L^2$ $\Rightarrow \alpha_i$ is the step size. $3:$ for $t \leftarrow 1$ to T do $4:$ Draw $\mathbf{z}_t \sim \mathcal{N}(0, I)$ $5:$ $\tilde{\mathbf{x}}_t \leftarrow \tilde{\mathbf{x}}_{t-1} + \frac{\alpha_i}{2} \mathbf{s}_{\boldsymbol{\theta}}(\tilde{\mathbf{x}}_{t-1}, \sigma_i) + \sqrt{\alpha_i} \mathbf{z}_t$ 6: end for $7:$ $\tilde{\mathbf{x}}_0 \leftarrow \tilde{\mathbf{x}}_T$ $8:$ 9: end for return $\tilde{\mathbf{x}}_T$

Generated Samples

Generative modeling with Stochastic Differential Equations (SDEs)

Generalize the number of noise scales to infinity and perturb data with an SDE

An SDE with known hyper parameters converts data distribution into a Gaussian noise.

For creating new samples we reverse it with an SDE simmilar to Langevin dynamics.

Differential Equations

Ordinary Differential Equation (ODE):

$$
\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{f}(\mathbf{x}, t) \text{ or } \mathrm{d}\mathbf{x} = \mathbf{f}(\mathbf{x}, t)\mathrm{d}t
$$

Analytical
Solution:

$$
\mathbf{x}(t) = \mathbf{x}(0) + \int_0^t \mathbf{f}(\mathbf{x}, \tau) d\tau
$$

Iterative Numerical $\mathbf{x}(t + \Delta t) \approx \mathbf{x}(t) + \mathbf{f}(\mathbf{x}(t), t)\Delta t$ Solution:

Differential Equations

 1.0

Forward Diffusion with Stochastic Differential Equation

The Generative Reverse Stochastic Differential Equation

Thank you for your attention!