

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation. Except for this watermark, it is identical to the accepted version; the final published version of the proceedings is available on IEEE Xplore.

Condensing CNNs with Partial Differential Equations

Anil Kag, Venkatesh Saligrama Department of Electrical and Computer Engineering, Boston University {anilkag, srv}@bu.edu

(2022)

Main Message

Discrete CNNs (ResNet, EfficientNet)

Repetitions are expensive : compute & storage

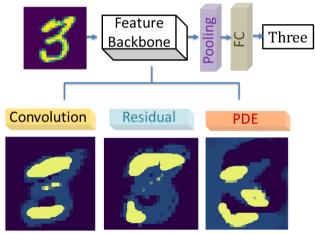
Our Proposal : Global Layer based on PDEs

> Apply PDE instead of repetitions

Shallow Networks
Low Storage & Compute
Integrable in any network

Comparison on learned representation

➤ Visualization : MNIST-10



Feature Backbone	Accuracy (%)	Confusion b/w 3 & 5
Convolution	92.01	27
Residual	92.53	30
Global	95.03	9

> Baseline Comparison : CIFAR-10

Architecture	Accuracy (%)	#Params	#MACs	Inference Time (s)	Depth
ResNet-32	92.49	460K	70M	4.5	15
MDEQ	92.28	1.1M	1.5B	23.3	-
ResNet-Global	91.93	162K	15M	1.9	6

Bold Numbers

Empirical Evaluation Highlights

> Low Model Footprint @ Similar Accuracy

Architecture	CIFAR-10 Acc. (%)	CIFAR-100 Acc. (%)	#Params	#MACs
NeuPDE	95.4	76.4	9M	4.1B
MDEQ	93.8	71.1	10M	8.3B
ResNet-32	92.4	68.6	473K	70M
ResNet-Global	91.9	68.1	168K	15M
DenseNet	95.3	77.2	800K	297M
DenseNet-Global	95.0	75.7	481K	136M
DARTS	97.1	82.5	3.4M	539M
DARTS-Global	96.9	81.9	835K	213M

> High Accuracy @ Similar Model Footprint

Tiny Models

Architecture	CIFAR-100 Acc. (%)	#Params	#MACs	CIFAR-100 Acc. (%)	#Params	#MACs
ResNet-56	70.4	861K	127M	35.2	14K	3.4M
ResNet-Global	74.3	1.3M	119M	43.6	16K	3.6M
DenseNet DenseNet-Global	77.2 78.9	800K 922K	297M 247M		-	-
Wide-ResNet	79.1	9M	1.3B	39	23K	9.8M
Wide-ResNet-Global	80.5	9M	1.3B	50.2	24K	8.7M
DARTS	82.5	3.4M	539M	54.6	43K	7.7M
DARTS-Global	84.2	2.4M	519M	60.7	41K	8.2M

Scales easily to Imagenet-1K

Architecture	Top-1 Acc. (%)	#Params	#MACs
MDEQ-Small	75.5	18M	21B
MBV2	71.9	3.4M	300M
MBV2-Global	71.6	1.6M	193M
MBV3	75.2	5.4M	219M
MBV3-Global	74.1	3M	156M
EfficientNet-B0	77.1	5.3M	390M
EfficientNet-B0-Global	76.1	2.4M	244M

PDE: advection-diffusion

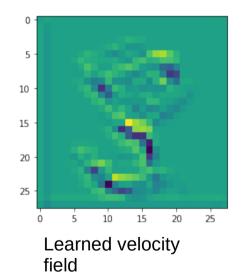
(a) **PDE:** At the heart of the Global feature layer is the following generic advection-diffusion PDE 1

$$\frac{\partial}{\partial t}H(x,y,t) + \frac{\partial}{\partial x}\left(u(x,y,t)H(x,y,t)\right) + \frac{\partial}{\partial y}\left(v(x,y,t)H(x,y,t)\right)$$
$$= \frac{\partial}{\partial x}\left(D_x\frac{\partial}{\partial x}H(x,y,t)\right) + \frac{\partial}{\partial y}\left(D_y\frac{\partial}{\partial y}H(x,y,t)\right) + f(I(x,y))$$

t, x, y: time and spatial coordinates H(x,y, t): image evolving in time H(x,y, 0): initial guess for learned representation to provide for PDE solver, (can be input image or a function of it)

Free parameters in PDE: (a) function f (b) particle velocity (u, v), and (c) diffusion coefficient (D_x, D_y) . (d) boundary condition

Physical meaning: consider image as a concentration distribution of particles inside a fluid with a velocity field. Movements in fluid change the image and result in new representations. Aim is to learn these movements inside the fluid.



Why it works better

- No clear answer in the paper
- My understanding: instead of learning multiple convolution kernels that work locally the method learns two matrices with the same size of the image (velocity field).
- Novelty: introduces a new way to concentrate information and exploits dynamics of PDEs for constraining the feature maps.

More Details:

https://www.youtube.com/watch?v=6mNl2XFAjcQ&ab_channel=AnilKag https://openaccess.thecvf.com/content/CVPR2022/html/Kag_Condensing_CNNs_With_Partial_Differential _Equations_CVPR_2022_paper.html

BOSTON UNIVERSITY

Condensing CNNs with Partial Differential Equations

Anil Kag and Venkatesh Saligrama (ECE Department, Boston University)

CVPR JUNE NEW ORLEANS

Discrete CNNs (ResNet, EfficientNet)

> Repetitions are expensive : compute & storage

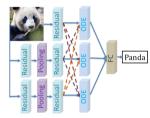
ODE CNNs (Neural-ODE, NeuPDE)

> Does not scale to large scale datasets

 MNIST	Acc. (%)	#Params	#MACs
Neural-ODE	99.49	220K	100M
NeuPDE	99.49	180K	50M
ResNet	99.51	600K	30M

ODE CNNs (MDEQ)

Scales up to Imagenet, **But** computationally expensive



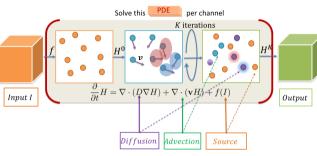
Imagenet-1K	Acc. (%)	#Params	#MACs
ResNet	77.8	60M	11B
DenseNet	76.3	14M	3.5B
MDEQ-Small	75.5	18M	21B

Feature Comparison with Prior Work

Architecture Type	Architecture	Storage Reduction	Compute Reduction	Large Scale Datasets
Discrete-CNNs	ResNet	1x	1x	~
	Neural-ODE	\checkmark	×	X
ODE-CNNs	NeuPDE	\checkmark	×	X
	MDEQ	\checkmark	×	\checkmark
Global-CNNs (ours)	ResNet-Global	\checkmark	\checkmark	\checkmark

Our Proposal : Global Layer based on PDEs

Apply PDE instead of repetitions



Visualization : MNIST-10

Convolution Residual PDE

Feature

Feature Backbone		Confusion b/w 3 & 5
Convolution	92.01	27
Residual	92.53	30
Global	95.03	9

> Baseline Comparison : CIFAR-10

Architecture	Accuracy (%)	#Params	#MACs	Inference Time (s)	Depth
ResNet-32	92.49	460K	70M	4.5	15
MDEQ	92.28	1.1M	1.5B	23.3	-
ResNet-Global	91.93	162K	15M	1.9	6

Empirical Evaluation Highlights

> Low Model Footprint @ Similar Accuracy

Architecture	CIFAR-10 Acc. (%)	CIFAR-100 Acc. (%)	#Params	#MACs
NeuPDE	95.4	76.4	9M	4.1B
MDEQ	93.8	71.1	10M	8.3B
ResNet-32	92.4	68.6	473K	70M
ResNet-Global	91.9	68.1	168K	15M
DenseNet	95.3	77.2	800K	297M
DenseNet-Global	95.0	75.7	481K	136M
DARTS	97.1	82.5	3.4M	539M
DARTS-Global	96.9	81.9	835K	213M

> High Accuracy @ Similar Model Footprint

Tiny Models

Architecture	CIFAR-100 Acc. (%)	#Params	#MACs	CIFAR-100 Acc. (%)	#Params	#MACs
ResNet-56	70.4	861K	127M	35.2	14K	3.4M
ResNet-Global	74.3	1.3M	119M	43.6	16K	3.6M
DenseNet	77.2	800K	297M	-	-	-
DenseNet-Global	78.9	922K	247M	-	-	-
Wide-ResNet	79.1	9M	1.3B	39	23K	9.8M
Wide-ResNet-Global	80.5	9M	1.3B	50.2	24K	8.7M
DARTS	82.5	3.4M	539M	54.6	43K	7.7M
DARTS-Global	84.2	2.4M	519M	60.7	41K	8.2M

Scales easily to Imagenet-1K

Architecture	Top-1 Acc. (%)	#Params	#MACs
MDEQ-Small	75.5	18M	21B
MBV2	71.9	3.4M	300M
MBV2-Global	71.6	1.6M	193M
MBV3	75.2	5.4M	219M
MBV3-Global	74.1	3M	156M
EfficientNet-B0	77.1	5.3M	390M
EfficientNet-B0-Global	76.1	2.4M	244M

https://github.com/anilkagak2/PDE_GlobalLayer