(NeurIPS 2021).

Causal Navigation by Continuous-time Neural Networks

Charles Vorbach^{1,*}, Ramin Hasani^{1,*}, Alexander Amini¹, Mathias Lechner², Daniela Rus¹

Camera input stream

CNN+Fully connected Network

CNN+Fully connected Network + Noise!

CNN + Neural Circuit Policy

CNN + Neural Circuit Policy + Noise

Causal navigation of a drone towards the red box

Figure 1: Causal navigation from raw visual inputs. Given a sequence of raw RGB inputs (left) a drone is trained to navigate towards the red-cube target. We visualize the saliency maps (right) for each model. Neural circuit policies (Lechner et al., 2020a) (a specific representation of CT-RNNs) can learn causal relationships (i.e., attend to the red-cube) directly from data while other models fail to do so. ODE-RNNs (Rubanova et al., 2019b), LSTM (Hochreiter and Schmidhuber, 1997) and CT- Gated Recurrent Units (Mozer et al., 2017). Saliency maps are computed by the visual backprop algorithm (Bojarski et al., 2016).

Main Message

- Differential Equations can form causal structures for navigation tasks
- Continuous-time neural networks (our method) can learn the causal relationships between the agent and the environment, while RNNs can't.

Continuous-Time Neural Networks

Most of dynamical system, like this navigation task, ideally can be described by differential equations

Continuous-time recurrent neural networks (CT-RNNs) Achieving stability with an extra term, t: time-constant

$$\frac{d\mathbf{x}(t)}{dt} = -\frac{\mathbf{x}(t)}{\tau} + f(\mathbf{x}(t), t, \theta),$$

$$\frac{d\mathbf{x}(t)}{dt} = -\left[\frac{1}{\tau} + f(\mathbf{x}(t), \mathbf{I}(t), t, \theta)\right] \odot \mathbf{x}(t) + f(\mathbf{x}(t), \mathbf{I}(t), t, \theta) \odot A.$$

(Hasani et al., 2021b)

liquid time-constant networks (LTCs)

Methodology

Assume the Dynamic Causal Model to be:

- Matrix A is a fixed internal coupling of the system
- Matrix B controls the impact of the inputs on the the coupling sensitivity
- Matrix C embodies the external inputs' influence on the state of the system

Let f be an activation function such as tanh:

 $f(\mathbf{x}(t), \mathbf{I}(t), t, \theta) = tanh(W_r\mathbf{x} + W\mathbf{I} + b)$

$$\frac{\partial F}{\partial \mathbf{I}}\Big|_{x=0} = \underline{W}(\mathbf{I} - f^2) \odot A \qquad \text{Weights to be optimized!}$$
$$\frac{\partial^2 F}{\partial \mathbf{x}(t)\partial \mathbf{I}(t)} = W(f^2 - 1) \odot \left[2 \underline{W_r} f \odot (\underline{A} - x) + 1\right]$$

Table 4: Closed-loop evaluation of trained policies on various navigation and interaction tasks. Agents and policies are reinitialized randomly at the beginning of each trial (n=50). Values correspond to success rates (higher is better).

	1	Static Target						Chasing	Hiking	
Model	Clear	Fog	Light Rain	Heavy Rain	Occlusion	Clear	Fog	Light Rain	Heavy Rain	Clear
CNN	36%	6%	32%	2%	4%	50%	42%	54%	28%	0%
LSTM	24%	22%	22%	4%	20%	66%	62%	56%	44%	2%
ODE-RNN	18%	10%	18%	2%	24%	52%	42%	62%	44%	4%
CT-GRU	40%	8%	60%	32%	28%	38%	36%	48%	42%	0%
NCP (ours)	48%	40%	52%	60%	32%	78%	52%	84%	54%	30%

Reference links

- 1. Causal Navigation by Continuous-time Neural Networks
- 2. CAUSALITY FOR MACHINE LEARNING
- 3. Dynamic causal modelling
- 4. Liquid Time-constant Networks
- 5. https://slideslive.com/38968213/causal-navigation-by-continuoustime-neural-netwo rks?ref=recommended
- 6. https://www.youtube.com/watch?v=IlliqYiRhMU&list=WL&index=3&ab_channel=MI TCBMM